Sunday, 17 April 2011

Materials scientists at Harvard demonstrate the first macro-scale thin-film solid-oxide fuel cell


Cambridge, Mass. - April 3, 2011 - Materials scientists at the Harvard School of Engineering and Applied Sciences (SEAS) and SiEnergy Systems LLC have demonstrated the first macro-scale thin-film solid-oxide fuel cell (SOFC).
While SOFCs have previously worked at the micro-scale, this is the first time any research group has overcome the structural challenges of scaling the technology up to a practical size with a proportionally higher power output.
Reported online April 3 in Nature Nanotechnology, the demonstration of this fully functional SOFC indicates the potential of electrochemical fuel cells to be a viable source of clean energy.
"The breakthrough in this work is that we have demonstrated power density comparable to what you can get with tiny membranes, but with membranes that are a factor of a hundred or so larger, demonstrating that the technology is scalable," says principal investigator Shriram Ramanathan, Associate Professor of Materials Science at SEAS.
SOFCs create electrical energy via an electrochemical reaction that takes place across an ultra-thin membrane. This 100-nanometer membrane, comprising the electrolyte and electrodes, has to be thin enough to allow ions to pass through it at a relatively low temperature (which, for ceramic fuel cells, lies in the range of 300 to 500 degrees Celsius). These low temperatures allow for a quick start-up, a more compact design, and less use of rare-earth materials.
So far, however, thin films have been successfully implemented only in micro-SOFCs, where each chip in the fuel cell wafer is about 100 microns wide. For practical applications, such as use in compact power sources, SOFCs need to be about 50 times wider.
The electrochemical membranes are so thin that creating one on that scale is roughly equivalent to making a 16-foot-wide sheet of paper. Naturally, the structural issues are significant.
"If you make a conventional thin membrane on that scale without a support structure, you can't do anything—it will just break," says co-author Bo-Kuai Lai, a postdoctoral fellow at SEAS. "You make the membrane in the lab, but you can't even take it out. It will just shatter."
With lead author Masaru Tsuchiya (Ph.D. '09), a former member of Ramanathan's lab who is now at SiEnergy, Ramanathan and Lai fortified the thin film membrane using a metallic grid that looks like nanoscale chicken wire.
SOFC grid shapes
Scanning electron microscopy reveals the structured surface of the electrochemical membrane. Ramanathan's team found circles and hexagons to provide the most stable structure. Photo courtesy of Shriram Ramanathan.

The tiny metal honeycomb provides the critical structural element for the large membrane while also serving as a current collector. Ramanathan's team was able to manufacture membrane chips that were 5 mm wide, combining hundreds of these chips into palm-sized SOFC wafers.
While other researchers' earlier attempts at implementing the metallic grid showed structural success, Ramanathan's team is the first to demonstrate a fully functional SOFC on this scale. Their fuel cell's power density of 155 milliwatts per square centimeter (at 510 degrees Celsius) is comparable to the power density of micro-SOFCs.
When multiplied by the much larger active area of this new fuel cell, that power density translates into an output high enough for relevance to portable power.
Previous work in Ramanathan's lab has developed micro-SOFCs that are all-ceramic or that use methane as the fuel source instead of hydrogen. The researchers hope that future work on SOFCs will incorporate these technologies into the large-scale fuel cells, improving their affordability.
In the coming months, they will explore the design of novel nanostructured anodes for hydrogen-alternative fuels that are operable at these low temperatures and work to enhance the microstructural stability of the electrodes.
The research was supported in part by the National Science Foundation (NSF) and performed in part at the Harvard University Center for Nanoscale Systems, a member of the NSF-funded National Nanotechnology Infrastructure Network.

Friday, 15 April 2011

Designer DNA Nanoarchitectures

Chenxiang Lin, Yan Liu and Hao Yan

Biochemistry200948 (8), pp 1663–1674
DOI: 10.1021/bi802324w

Naturally existing biological systems, from the simplest unicellular diatom to the most sophisticated organ such as the human brain, are functional self-assembled architectures. Scientists have long been dreaming about building artificial nanostructures that can mimic such elegance in nature. Structural DNA nanotechnology, which uses DNA as a blueprint and building material to organize matter with nanometer precision, represents an appealing solution to this challenge. On the basis of the knowledge of helical DNA structure and Watson−Crick base pairing rules, scientists have constructed a number of DNA nanoarchitectures with a large variety of geometries, topologies, and periodicities with considerably high yields. Modified by functional groups, those DNA nanostructures can serve as scaffolds to control the positioning of other molecular species, which opens opportunities to study intermolecular synergies, such as protein−protein interactions, as well as to build artificial multicomponent nanomachines. In this review, we summarize the principle of DNA self-assembly, describe the exciting progress of structural DNA nanotechnology in recent years, and discuss the current frontier.


Friday, 8 April 2011

High-frequency, scaled graphene transistors on diamond-like carbon

Nature
 
472,
 
74–78
 
(07 April 2011)
 
doi:10.1038/nature09979

Owing to its high carrier mobility and saturation velocity, graphene has attracted enormous attention in recent years12345. In particular, high-performance graphene transistors for radio-frequency (r.f.) applications are of great interest678910111213. Synthesis of large-scale graphene sheets of high quality and at low cost has been demonstrated using chemical vapour deposition (CVD) methods14. However, very few studies have been performed on the scaling behaviour of transistors made from CVD graphene for r.f. applications, which hold great potential for commercialization. Here we report the systematic study of top-gated CVD-graphene r.f. transistors with gate lengths scaled down to 40nm, the shortest gate length demonstrated on graphene r.f. devices. The CVD graphene was grown on copper film and transferred to a wafer of diamond-like carbon. Cut-off frequencies as high as 155GHz have been obtained for the 40-nm transistors, and the cut-off frequency was found to scale as 1/(gate length). Furthermore, we studied graphene r.f. transistors at cryogenic temperatures. Unlike conventional semiconductor devices where low-temperature performance is hampered by carrier freeze-out effects, the r.f. performance of our graphene devices exhibits little temperature dependence down to 4.3K, providing a much larger operation window than is available for conventional devices.



Wednesday, 6 April 2011

06 April - Two-Dimensional Nanosheets Produced by Liquid Exfoliation of Layered Materials

Today Hong will present the following paper:

Two-Dimensional Nanosheets Produced by Liquid Exfoliation of Layered Materials


Science 331, 568 (2011)

Jonathan N. Coleman, et al.
DOI: 10.1126/science.1194975



If they could be easily exfoliated, layered materials would become a diverse source of two-dimensional crystals whose properties would be useful in applications ranging from electronics to energy storage. We show that layered compounds such as MoS2, WS2, MoSe2, MoTe2, TaSe2, NbSe2, NiTe2, BN, and Bi2Te3 can be efficiently dispersed in common solvents and can be deposited as individual flakes or formed into films. Electron microscopy strongly suggests that the material is exfoliated into individual layers. By blending this material with suspensions of other nanomaterials or polymer solutions, we can prepare hybrid dispersions or composites, which can be cast into films. We show that WS2 and MoS2 effectively reinforce polymers,  whereas WS2/carbon nanotube hybrid films have high conductivity, leading to promising thermoelectric properties.